Fly Dangerous 5.0 was released and it is packed with new features like reflections on the ship, Steam leaderboards and ghosts! So you can basically race against yourself or others from the leaderboards!

As usual I gave it a spin and had a blast.

First things first though. The Linux version defaults to OpenGL and this resulted in like 25 FPS for me and the input of my X52 Pro (mapped as XBOX controller) was so laggy that I could sip coffee during each course correction. This was when I remembered the magic parameter -force-vulkan from other Unity games and from here it was smooth sailing. Eventually I ended up with the game start options obs-gamecapture for recording, mangohud for some FPS info and -force-vulkan for… well, FPS.

obs-gamecapture mangohud %command% -force-vulkan

As usual YMMV.

The flight mechanics changed a little bit and @jayleefaulkner explains this in great detail in the video Alpha 7: https://www.youtube.com/watch?v=I2sn26HVY7o so I’m having a learning curve ahead of me… again!

Anyway, I’m not doing too bad after some rounds. Only issue left is that I can not disable the flight assist for some reasons. Probably a bad binding but I was eager to play so I went with it.

Fly Dangerous (on Linux PC) – with Vulkan

Oh and did I mention that this little gem is still for free and even opensource?

I want more control over what my microphone picks up on screen share in video conferences or during streaming but I don’t want to buy a hardware mixer. I also want to be able to disable the microphone with a hotkey but it doesn’t have any physical switch. So achieve all this I utilise PipeWire to run a bunch of virtual devices that I can control via pavucontrol and obs later. Video conferences get this as “default device” so they don’t get a chance to mess up my audio setup (looking at you Teams). The steps are the same for PulseAudio if you don’t have PipeWire (yet).

#!/bin/sh
# setup virtual device intended for monitoring
pactl load-module module-null-sink sink_name="BekoBlaster" device.icon_name="audio-card-analog" node.nick="BekoBlaster" node.description="BekoBlaster-16" sink_properties=device.description="BekoBlaster-16"
# setup virtual MIC so intended monitoring device can be recorded from as MIC
pactl load-module module-remap-source master="BekoBlaster.monitor" node.nick="BekoMic" device.icon_name="audio-input-microphone" source_name="BekoMic-16" source_properties=device.description="BekoMic-16"
# IMPORTANT:
# RUN `pavucontrol` => Select Tab Record => Set BekoMic-16 input to "Monitor of BekoBlaster-16"

The 16 is not important. It’s just my kind of humour as my first Linux PC had a SoundBlaster16 😛 It also is a pattern sufficient enough so I don’t mix this up with the zoo of real microphones or audio sinks attached to my computer.

This is already sufficient enough so that everything played on the device BekoBlaster-16 can be recorded on the BekoMic-16 again, that I select as input microphone for Browser (video conferences) or Discord at this point. This can be done with pavucontrol – or later in obs.

This isn’t enough, of course. In case of e.g. playing music (or streaming a game) I’d also want to hear the sound myself too. For this I create an additional null sink and a combined sink. With this approach I can later fine tune in obs what gets recorded to which audio track (where audio track 1 is the one used for streaming) and what ends up on the BekoBlaster-16, that acts as my monitor and due to the remapped source also as virtual mic.

# setup virtual device for games (or whatever OBS should record)
pactl load-module module-null-sink sink_name="OBS-Blaster" device.icon_name="audio-card-analog" node.nick="OBS-Blaster" node.description="OBS-Blaster" sink_properties=device.description="OBS-Blaster"
# OPTIONAL setup a combined sink so I can enjoy game sound while OBS gets a copy
pactl load-module module-combine-sink slaves="OBS-Blaster,bluez_output.10_4F_A8_84_18_01.a2dp-sink" node.nick="OBS-Blaster-AND-Headphones" node.description="OBS-Blaster-AND-Headphones" sink_properties=device.description="OBS-Blaster-AND-Headphones"
# Important tools to manipulate: `pw-cli list-objects`, `pw-cli destroy $id`, `pactl list short | grep module`, `pactl unload-module $id`

With this (and my headset connected) it starts to get crowded in my device list.

As you can hear err… hopefully see: The sink OBS-Blaster-AND-Headphones is now selected for playing music which results in the music being played on the next virtual sink OBS-Blaster and my h.ear (MDR-100ABN) headphones. The same could be done with the BekoBlaster-16, of course, but bear with me. We still don’t have any real microphone added to the mix and while this can be done with PipeWire or PulseAudio alone too I need this usually with video included too so obs it is.

Here the most important setting is the monitoring device, which is the BekoBlaster-16 from the beginning, that can be used as microphone in e.g. Discord later again.

Next is the set-up of the mixer where I’m interested in 4 devices only:

  • The BekoMic-16 without monitor (it is the monitor so this would result in an echo chamber) and optional track 5 for recording (so I’ll know later how the mix sounded – but this is never used for video editing later).
  • The desktop audio without monitor, so random system sounds (or other Discord voices!) don’t make it to any stream. It can be recorded on it’s own track tho in case I fcked up or need a reference later on during editing.
  • The Mic/Aux, which represents the real microphone used. It is echoed on the monitor microphone and on track 1 (send to my streaming server) and on track 2 so I have a separate microphone track later to work with in post edit.
  • The OBS-Blaster, which usually represents the game I’m playing. It is echoed on the monitor microphone and on track 1 (send to my streaming server) and on track 4 so I have a separate game/music track later to work with in post edit.

This way I can control in great detail what ends up on the Discord / a video conference / game streaming, while I get the full power of obs scenes (where I also do my greenscreen mixing), mute microphones as I see fit and have some material to work with later when I decide to make a video on stuff. Here I did set up Discord to read from the virtual BekoMic-16 and output to my headphones only (where no recording in OBS is done) – so perfect for most Discord / video conference sessions.

Don’t mind the flipped video preview. That’s perfectly fine and will look right for the viewers later. This is by the way the virtual camera sink feature of obs and the v4l2loopback kernel driver that I also read from in video conferences instead of the real webcam. This way I can also control exactly what the webcam shows – zoom / crop included.

The whole mess looks like this visualised in helvum, a patchbay for PipeWire.

Most of this explains itself. The WEBRTC VoiceEngine is the recording of Discord. Other devices may float around but are not used at the moment of this snapshot.

More on this and proper documentation: https://gitlab.freedesktop.org/pipewire/pipewire/-/wikis/Virtual-Devices

You probably heard about this before: An Arduino can be made into an excellent DIY joystick. Most examples use a Leonardo or Micro for this for a very good reason. They one comes basically with a chip that is recognized as HID (Human Interface Device) hardware on any modern operating system.

This is not the case with a Mega. This one has other perks but HID it is not. It sure shows up as USB device and a ttyUSB is raised where serial communications with the Arduino can be initiated. I’m also aware that some flash the built in programmer of the Mega so it starts operating like the others (which obviously removed the built in programmer). I’m on Linux PC though so I thought it’s basically a job of tricking the system into recognizing it as joystick and call it a day and OMG was I wrong!

How it’s not done

My train of thoughts was like this: Linux still supports plenty of old serial joysticks so how complicated can it be to send some bits an existing driver recognizes. Old hardware like this is usually glued to the driver with the tool inputattach of the Linux Console Project. This does basically initialise a joystick on some serial connection and sends it off to a fitting kernel driver. This way even non-USB, or let’s better say non-HID hardware, is mapped to a kernel driver who in return will set-up the joystick subsystem and manage the communication with the stick via a serial connection.

Turns out I’m not the first one with that idea and apparently someone made it work by connecting old Playstation Controller and a Wii Classic Controller to an Ardunio and fake a Stinger device without the use of HID so Kudos to Jarno Lehtinen here and his Linux-Arduino-Serial-Joystick repo – you sure did sent me down a rabbit hole of horror and amazement. I couldn’t even get inputattach to wait for that magic string to be sent with anything else than 9600 baud and aligned stars! I also had to throw socat into this horrible mix because the Arduino would insist on rebooting on init so a timeout was guaranteed! In case you wonder how I did this:

socat -r left.raw -R right.raw pipe:/dev/ttyUSB0 PTY,link=/dev/ttyUSB1,rawer
# and xdd to show me the debug juice
tail -f left.raw | xxd -c4
# and on yet another terminal
inputattach --baud 9600 --stinger /dev/ttyUSB1

This also meant that I had to tear everything down for reprogramming the Arduino. Anyway, in the end I could finally get through that init phase where the stinger related code in inputattach is waiting for the magic key after sending “ E5E5” to finally load the Stinger kernel driver – communication for both ways confirmed!

    // "\r\n0600520058C272";
    byte byteResponse[] = {0x0D, 0x0A, 0x30, 0x36, 0x30, 0x30, 0x35, 0x32, 0x30, 0x30, 0x35, 0x38, 0x43, 0x32, 0x37, 0x32};
    if (Serial.availableForWrite() >= sizeof(byteResponse))
    {
      Serial.write(byteResponse, sizeof(byteResponse));
    }

At this point I had a pipe to prevent the timeout due to the resetting Arduino, the _only_ working baud rate 9600 I could figure out with the Mega, a loaded driver that was recognized as joystick and was sitting put and did… absolutely nothing. Null. Nada. Not a single bit made it to the driver and I could not figure out why. My guess is it needs a change in the baud rate to the original 1200 (?) of the Stinger but I have no idea if this is true. I could also not find any way how the stream is controlled and since the driver would fill up 2 bytes all the time and interpret them there is a fair chance that it would simply be one byte off all the time. Speculations tho, I simply didn’t grasp the stinger.c source so this is all just a theory. I do not want to admit how much time I sunk into this and I was pretty frustrated at this point. Reading some stupid serial? Not like this! Too many hoops!

So I threw it all in the bin 🚮

How it’s probably done

Say hi to /dev/uinput where you can basically raise virtual devices, like a joystick, without [much?] pain. I’m not the first one, of course, and funny enough the reason behind is very similar to mine. Read more on Virtual joystick on Linux by Gwilym Kuiper where this is all explained in great detail. The referred code at https://github.com/gwilymk/arduino-joystick sure did help me to get started and even without having touched Rust ever before I was able to quickly adjust this for my needs, doubling the possible buttons and get it up and running in just a few hours for my Linux PC. Cheers mate (also Jarno Lehtinen – you teached me a lot that day :D) 🕹️

So here it is: A Mega acting as joystick without HID over a serial connection driven by a userspace daemon (means no kernel driver required) written in Rust providing a virtual uinput device for a joystick on the “modern” event system. Heck it’s even recognized in Wine!

What a journey to begin with. Now I need a back-channel for my blinky lights so I get my Raspberry Pi back from simpit duty 🙃

This is a brief description how to mod an CY-822A USB joystick controller into accepting analogue input. I’ve done this modification now with two of my PCBs and worked with both for an extended period of time without any problems. To achieve this two things have to be done – at your own risk!

sdl2-jstest detected 5 axes

The PCB comes with 5 analogue axes according to my Linux PC and sdl2-jstest and while I’m not sure where the 5th is located a tiny modification will allow us to use at least 4 of the axes.

Locate the central lane and simply scratch off the track with a sharp knife at the 3 indicated positions.

Locate the resistors R1 – R8 on the front that make up for 4 possible connections for analogue input with the use of potentiometers. There are 2 resistors with ~10k on the PCB that have to go. The 2 resistors hold 4 of the 5 axes perfectly still in the centre because the middle lane is bridged on the backside. This is the part where the conductor path has to be interrupted. Locate the central lane and simply scratch off the track with a sharp knife. Also clean all the holes of R1 to R8 so you can solder in some new pins for easier access. Use a multimeter to make sure that none of the 4 central soldering points are connected with each other any more. The upper and lower ones stay connected (Plus and GND).

The wire bridge at J1 makes the board boot in analogue mode

Next we want to remove the zero ohm resistor at J1 and add a wire bridge instead. Look for an resistor with a single black ring next to R2, remove it, and solder in the wire bridge next to R1. This is basically a jumper setting but with a bridge. I’ve no idea why the designer went with a zero ohm resistor and not with a bridge. My only guess is that this was cheaper for the assembly machines.

Anyway, this will make the board boot in analogue mode so we do not have to use a mode switch on power on every time. This serves two purposes: Axes are now read from input and actually send as joystick events on the USB wire while the former digital joystick connector (5 pins) is now mapped to Up/Down/Left/Right buttons – so no extra buttons are needed here any more (but can still be added, of course).

Any potentiometer should do – mine are 100k – 200k. YMMV.

Now it’s time to connect potentiometers as analogue inputs. This is pretty straight forward. Just make sure that the central connector goes to the centre of each axes. Change the upper with the lower pin if the direction is not as desired.

Please note that any axes that has no input attached will report _a lot_ of jitter making your game/app go nuts. This is what the former resistors at R1 and R2 were there for.

The last update has been a while. I focused my attention to the MFDs (Multi-function display). This part didn’t get much attention yet and I was caught between the difficult choice to learn yet another fancy framework, like Raylib, that would do OpenGL ES 2.0 without X11 on the Raspberry – or just throw the might of my CoffeeLake at it and go with ReactJS since most of the data was already available via NodeRED anyway. Also… ARWES is just so cool 🤩

I went with ReactJS and ARWES again, simply because I have some experience in this by know thanks to my Streaming Overlay I wrote with it. Hobbling it up to NodeRED was just a matter of installing SocketIO to transport the messages. It’s all a very hacky mess but it gets the job done.

Video demonstration of my simulated cockpit made from cardboard on a budget mainly used to play Elite Dangerous in early 2022. This is work in progress.

While seeking through the available data I noticed that I don’t get velocity values from Elite. That’s not so important in space but _kinda_ interesting for me in planetary flight to satisfy the flight sim gamer in me as well. I noticed tho that I do get timestamped latitude, longitude and altitude values so shouldn’t it be possible to “simply” calculate this, right? Right?

This was when I dived into the rabbit hole of calculating velocity and heading on planetary objects using a spherical coordinate system and while I didn’t nail it exactly how Elite does it the result is close enough. The game provides the required data to go crazy here – most important the radius of the current object. In _theory_ I could start writing some primitive AFS (Auto Flight System) routines now, which I’m totally going to explore at some point in the future just because 🤓

Checking my maths – yes, altitude is added to the mix so velocity is mostly correct as long as no rapid course changes are made

After spending way too much time with this and the Pythagorean theorem (Yes mum, a game made me do maths. MATHS! 🤯) I settled with some calculations and data for my current ship to the right and targeted ship data on the left. This is sort of tricky because many game events update different parts of the data so timestamps have to be kept in mind and a game specific parsing strategy is required. See the last part of the demonstration video to get an idea how this looks.

Improving situational awareness by putting the video feed of wingman / gunner on the central MFD.

Another point to tick off my list was getting the head tracking to work in Elite (again). Now this is very Linux PC specific so you may tune out on this paragraph. On Linux PC I’d usually compile Opentrack with the Wine Glue, patch in my appdata dir for Proton and hope that it’s still ABI compliant to Just work™. Alas recent Proton is sandboxed within pressure vessel and the usual approach of memory mapping is simply no longer working, if I got the gist of this right.

So my _current_ strategy is to download and drop the Windows build of Opentrack into the game folder and chain-load the EXE with the game where the Opentrack EXE would listen on UDP while my native Opentrack BIN would send via UDP. A task not made easy with Proton but it is possible. The following snippet may give you some pointers:

#!/bin/bash
export STEAM_COMPAT_DATA_PATH=/games/steam/steamapps/compatdata/359320
export STEAM_COMPAT_CLIENT_INSTALL_PATH="$HOME/.steam/steam"
python3 /games/steam/steamapps/common/Proton\ -\ Experimental/proton run opentrack.exe

Why running Opentrack twice? The native build performs a lot better with my webcam and every frame really count here. Reading data via UDP is not much of a burden for Proton. This also saves me the trouble of fiddling with Wine Glue, a painful compile process nobody should endure involving installation of many many additional 32bit libraries. Hilarious but it works.

This is the result of a live stream where I’m implementing my proof of concept of using a Neopixel string as status indicators for Elite Dangerous in my SimPit.

It was a mixed stream of GER/ENG (subtitles to follow) and consists of three parts: Reproducing the proof of concept, implementing the solution with a whopping amount of 17 LED indicators and finally a test run in the game at the end.

Jump to 36:00 for Neopixel action with Elite Dangerous: Odyssey

One of my first experiences with was trying to get a P-51 into the air after getting comfortable with the Cessna. There is no special reason for this beside that it simply was one of my first plane models I got as a child. It’s not like I did know anything about this plane or avionics at all. It simply looked good so I went with it.

And I failed miserable on my first try. The P-51 was build for war and has like nothing in common with the set of controls I started to get comfortable with. Not that I know much about avionics to begin with, I mean. Anyway, YouTube to my aid: There is a wonderful channel named “Kermit Weeks” that I stumbled over when looking for answers and I found em here: https://www.youtube.com/watch?v=4z1Z-WEZZGM

After watching all three parts I finally managed to get one off the ground in – felt really good about it and… forgot about it again.

Until the YouTube algorithm decided to come back at me today and showed me https://animagraffs.com/how-a-p-51-mustang-works/ where it is explained in great detail how the P-51 Mustang actually works. There is a list of errata on the pinned comment on YouTube but after all this is a really high quality animated description of the plane and it’s workings.

I highly recommend to watch both pieces if you’ve only the slightest interest in planes or wartime history.

I made some progress on the status indicators and attached three Neopixels for testing. I’m controlling them via NodeRED where I’m faking the Status JSON file from Elite Dangerous so I can play with the flags a little bit.

Proof of concept demo video

I’m really happy with this, because with the same logic I can basically drive as many LED as I want as long as I provide enough power to have all LED going at the same time. This Proof of concept works just fine.

Behind the scenes recording so you get the idea of the setup followed by some Star Citizen gameplay:

DIY headtracker and Simpit and Star Citizen gameplay (on Linux PC)

In use:

* A Linux PC
* A DIY Headtracker
* A DIY Joystick “Primary Buffer Panel
* A X52 Pro HOTAS
* 3 Cameras + Recording Software
* An AMD RX5600XT in tears
* …a Beko learning How To Fly in SC xD

So you _still_ think you can’t space pew pew on Linux PC? Think again. I do it all the time: https://beko.famkos.net/2021/10/16/space-pew-pew-on-linux-pc/

Some people asked me for details on how I used Node-RED to get some game status information of Elite Dangerous into my SimPit so here is a more cohesive write-up with a short demo video.

I was looking for a simple way to do this but all the programs I found online are closed source solutions that have to be bought and are – as usual – Windows only. Best it would get is Android support and requires a tablet with touch functions. Nothing of this I want! The idea is to use something system agnostic that can be adjusted easily, because I want to use this for different games and not depend on a single vendor, hoping support will last and the thing work with my setup.

This was when I remembered Node-RED from usage in home automation because this is basically the same. You get a zoo of hardware, that somehow all interacts with a dashboard. All the data is on the wire and can be accessed via a web-browser. Fun enough I wasn’t the first with this idea because when I started searching for “Node-RED for simpit usage” I stumbled over the YouTube channel of Jon Back (https://www.jonback.se/) who did exactly this before (and even also used cardboard for prototyping). Encouraging and big shout out for the pioneer work!

So after installing Node-RED on my Linux PC and on my Raspberry Pi I connected the two installations via Websockets. That’s basically just entering an IP. While using MQTT is probably a better solution this was the easiest one because it doesn’t need an additional service.

Why I installed it twice? Well Elite drops a lot of the current game status in various JSON files, like a timestamped Journal and a Status file that holds most of the ship data I’m interested in most. The file is updated on changes and it’s easy to watch for such a change on a local filesystem. I also intend to make the receiving side as dumb as possible so I don’t have to update the code too often. I’m still uncertain what I’ll use in the end – an Arduino is also in consideration. This way I can hopefully connect other games easily as well by keeping the resulting data structure more universal and let the sender to the hard work of hammering the data into shape.

Short explanation what’s going on: File Changes listens for changes in my ED folder where the JSON files are located. Switches check for the file name forward it to a file opener. This one reads the file (Journal line by line) and passes the data to a JSON parser. This one forwards the parsed JSON data to a function that creates the desired data structures. Finally it is send to the receiver.

Most of the magic for Elite Dangerous happens in the function that parses the Status.json file, which is explained in detail at https://elite-journal.readthedocs.io/en/latest/Status%20File

flags = msg.payload.Flags;
// https://elite-journal.readthedocs.io/en/latest/Status%20File/
[
    "DockedOnPad", 
    "LandedOnSurface", 
    "LandingGearDown",
    "ShieldsUp",
    "Supercruise",
    "FlightAssistOff",
    "HardpointsDeployed",
    "InWing",
    "LightsOn",
    "CargoScoopDeployed",
    "SilentRunning",
    "ScoopingFuel",
    "SrvHandbrake",
    "SrvusingTurretview",
    "SrvTurretRetracted",
    "SrvDriveAssist",
    "FsdMassLocked",
    "FsdCharging",
    "FsdCooldown",
    "LowFuel",
    "OverHeating",
    "HasLatLong",
    "IsInDanger",
    "BeingInterdicted",
    "InMainShip",
    "InFighter",
    "InSRV",
    "HudinAnalysismode",
    "NightVision",
    "AltitudefromAverageradius",
    "fsdJump",
    "srvHighBeam",
].forEach((value, key) => {
   msg.payload[value] = flags & 1;
   flags = flags >> 1;
});
return msg;

The receiving Node-RED process on the Raspberry Pi does something similar.

The received data is once more parsed as JSON and checked based on the event string what type of message it got. If a status event is found it’s forwarded as 0 or 1 to a GPIO where a LED will be enabled or disabled. See the short demo video of the Primary Buffer Panel in action:

Short demo of Node-RED in action with Elite Dangerous (on Linux PC)

This is a proof of concept so far so it uses only a tiny bit of the available information to drive some LED I have on my custom GPIO breakout board. I ordered an WS2811 LED strip that should arrive next week. This type is basically a long string of RGB LED that are individually addressable. This is done via one single data PIN that is forwarded from LED to LED so I don’t need many GPIOs and only have to keep an eye on the ampere. Basically endless status indicator (until one in the chain breaks for good but hey, it’s a toy and not a real spacecraft :P).

Will this work? No idea. The hardware is not yet here but I found various ways to drive a so called “neopixel” LED stripe so from my understanding it should just work 🙃